
Integrating Z and Cleanroom

Allan M. Stavely
Computer Science Department

New Mexico Tech

Abstract

We describe an approach to integrating the Z speci-
fication notation into Cleanroom-style specification and
verification. In a previous attempt, a group at IBM used
formal refinement of the Z in their development. They
concluded that this was not cost-effective in a commer-
cial environment, and the attempt was not judged suc-
cessful. The current approach avoids formal refinement,
and instead begins by converting the Z to a fully con-
structive form, expressing all state changes using an
assignment notation. The development then proceeds
in Cleanroom style, with sections of the Z specifica-
tion simply distributed among the program components
to serve as their specifications. In a pilot project, this
approach was found to work quite well, with develop-
ment proceeding smoothly and predictably as normally
expected with Cleanroom methods.

1 History of the problem

In the early 1990s, a group of technical staff at the
IBM laboratory at Hursley Park (near Winchester, Eng-
land) attempted to integrate two software engineering
technologies which IBM had previously used separately
with considerable success: the Z specification notation
and the Cleanroom method.

The Z notation [15] [6] [13] [17] [18] is based on set
theory and other basic elements of discrete mathematics,
and incorporates novel structuring constructs (schemas
and the schema calculus). Z technology also includes
methods for the formal refinement of specifications into
designs and code.

The core of the Cleanroom method [10] [8] [16]
is formal or semiformal specification, and correspond-
ing verification done by a development group in review
meetings. Other elements of the method include no-
tations and techniques for stepwise refinement, testing
based on expected usage patterns, statistical analysis of
test results to predict product quality, and incremental

development.
IBM had had considerable experience with both tech-

nologies. The Cleanroom method was developed largely
at IBM, by Harlan Mills and his colleagues in the Fed-
eral Systems Division. By the time of the Hursley ex-
periment, it had been used successfully on a number
of industrial-sized projects at IBM and elsewhere. The
results were striking: very low levels of defects in the
products, with no net loss and often a net gain in pro-
ductivity [8] [3].

IBM had just finished a substantial development
project at Hursley using Z, in collaboration with its de-
velopers at Oxford University [5]. The project was a
major new release of the CICS transaction processing
system: 268,000 lines of new and modified code, of
which 37,000 lines were specified and designed using
Z and another 11,000 lines were partially specified in Z.
For the parts produced using Z, IBM reported a higher
percentage of defects eliminated early in the develop-
ment, a lower level of defects in the final product, and
an estimated 9% reduction in development costs. IBM
and Oxford were jointly given the Queen’s Award for
Technological Achievement for 1992 on the basis of this
work.

The CICS group at Hursley hoped that Z and Clean-
room methods could be used together, and would com-
plement each other to produce products of even higher
quality than with either separately. The approach that
they took was to write specifications in Z initially; to
proceed with formal refinement steps as normally done
in Z; to write the correctness criteria for these refine-
ments as mathematical theorems; and to prove these the-
orems in review meetings, as normally done in Clean-
room.

The experiment was not judged a success. In partic-
ular, the group found it too hard to do the formal refine-
ment from Z into code. The postmortem [12] concluded
that “it is not cost-effective in a commercial software
environment to do even semi-formal refinement without
machine assistance” (which was not available).

Despite this discouraging result, we felt that there

was much to be gained if Z and Cleanroom methods
could be integrated successfully. In the following, we
describe a quite different approach. We avoid formal
refinement in Z altogether, and instead begin by trans-
lating Z specifications into a form that more closely re-
sembles Cleanroom-style specifications. From there, the
development proceeds in Cleanroom style, but retaining
fragments of Z notation where appropriate. We found
that, using this approach, the Z notation can complement
Cleanroom methods quite effectively.

2 Z and Cleanroom specification styles

The Z notation is well suited to expressing the spec-
ification of a system as a whole, or of major parts of
a system. It provides a great deal of useful mathemat-
ical vocabulary, and the vocabulary of discrete mathe-
matics in particular, which can be used very effectively
to specify aspects of an information-processing system
at a high level. Furthermore, it provides the schema
notation and the schema calculus, by means of which
many different aspects of a specification, each perhaps
derived from a different requirement of the system, can
be expressed separately and then combined into a single
specification.

The Cleanroom method, on the other hand, provides
relatively little built-in notation. Indeed, one of its
strengths is that many kinds of notation, from a wide
variety of domains and at many levels of formality, can
be imported into it and used in its specifications. What it
does provide is, in particular, a straightforward method
of placing specifications on the lower-level components
of a program, down to the level of the control construct
or statement, and verifying that these components sat-
isfy their specifications.

It would seem to be a natural idea, then, to begin
by writing the top-level specification of a system using
Z, and then to proceed with the development in Clean-
room fashion, distributing the Z specification among
the program components and verifying those compo-
nents against the specification fragments using Clean-
room protocols in review meetings.

However, there is a gap that must be bridged before
the Z notation can be incorporated into Cleanroom-style
specifications. This is because there are fundamental
differences in the styles of the specifications of Z and
Cleanroom.

The Z notation is based on predicates, which express
preconditions and postconditions on operations, invari-
ants on data, and other assertions and constraints on the
data objects and inputs and outputs of a system. In par-
ticular, the specification of an operation defines a rela-
tion among inputs, outputs, previous values of state vari-

ables, and new values of those variables.
A fundamental property of Z is that such specifica-

tions may be nonconstructive: they may express prop-
erties that outputs and new values of variables must sat-
isfy, without giving any clue as to how these values can
be calculated from inputs and previous values of vari-
ables. In fact, specifications may even be nondetermin-
istic: they may not constrain each output and updated
variable to a unique value.

Here is an example which is both nonconstructive
and nondeterministic, from the specification of a text-
processing system: [6, p. 172]:

[CHAR]
TEXT == seq CHAR

Format
t; t0 : TEXT

words t0 = words t
8 l : ran (lines t0) � #l � width

In the specification of an operation in Z, the name of
a state variable is “decorated” with a 0 symbol to refer
to its new value; the undecorated variable name refers
to its previous value. (Input variables are decorated with
? and output variables with !.) Thus, this schema says
that a Format operation leaves the sequence of words
in t unchanged and that each line of t after the opera-
tion must be no longer than width (the functions words
and lines and the constant width are defined elsewhere).
The specification says nothing about how to achieve this
result and, in fact, there will usually be many ways of
dividing t into lines that will satisfy this specification.

Z practitioners see the ability to write nonconstruc-
tive and nondeterministic specifications as an advantage:

Non-deterministic operations are important
because they sometimes allow specifications
to be made simpler and more abstract [15,
p. 131].

Nonconstructive specifications achieve ex-
pressivity and brevity at the expense of exe-
cutability : : : they leave the programmer free
to choose among different implementation
strategies [6, p. 38].

In the Cleanroom method, on the other hand, the gen-
eral rule is that specifications are both deterministic and
constructive. Specifications are written in the “func-
tional” style [9], in which each operation, control con-
struct and statement in a program is viewed as comput-
ing a function on the program’s state:

X := f (X)

Here X is a state vector that encompasses all of the
program’s state variables, including its input and output
streams. Specifications are written in the form of in-
tended functions which explicitly give values for every
state variable which changes value. The usual notation
is the concurrent assignment, such as the following:

[sum; i; trend :=
sum + a[i]; i + 1; (sum + a[i])=(i + 1)]

A variant is the conditional concurrent assignment,
which specifies a state change by cases, such as the fol-
lowing:

[i > 0 ! trend := sum=i
j i = 0 ! sum; trend := 0; trend0]

Each case has a precondition and a concurrent assign-
ment which is the state change to be performed when the
precondition is satisfied; the computation is undefined
whenever no precondition is satisfied.

The usual situation is that the preconditions of a con-
ditional concurrent assignments are mutually exclusive
(there is no state in which any two are both true) and
that the right-hand side of each concurrent assignment
contains only single-valued expressions which are obvi-
ously computable. In this case, the specification is deter-
ministic and constructive. Exceptions are occasionally
made, and occasionally a specifier will depart from this
notation entirely. However, the rest of the Cleanroom
method, and the verification in particular, will usually
proceed more smoothly if the above conventions are fol-
lowed. One reason for this is that a common manipula-
tion in verification is to substitute the result of a compu-
tation into the specification of a following computation
and then simplify.

3 The transition from Z to Cleanroom

The first step in our adaption of a Z specification to
Cleanroom-style development and verification, then, is
to transform the Z into a deterministic and constructive
specification, so that it can be expressed using the in-
tended functions required by the Cleanroom method. It
might seem that this would be a nontrivial task, requir-
ing a great deal of effort and introducing many opportu-
nities to make mistakes that will jeopardize the success
of the project.

However, in our experience thus far, we find that the
job is usually not as hard as one might think. This is
largely because many parts of typical Z specifications
are already deterministic and constructive. In particular,
we find that many Z predicates are of the form

v1 = e1 ^ v2 = e2 ^ : : :

or

P ^ v1 = e1 ^ v2 = e2 ^ : : :

or

(P1 ^ v11 = e11 ^ v12 = e12 ^ : : :) _
(P2 ^ v21 = e21 ^ v22 = e22 ^ : : :) _ : : :

where each v is a changed state variable or an output
variable (i.e., an variable decorated with 0 or !) and such
variables do not occur in any P or e, and where (in the
third form) the Pi are mutually exclusive. Such pred-
icates define computations that are clearly both deter-
ministic and constructive, assuming that each P and e is
single-valued and there is an obvious way to compute
it. Furthermore, it is trivially easy to rewrite any such
predicate in conditional-concurrent-assignment form. In
fact, they are essentially in that form already, except for
the symbols used.

Fortunately, such forms are natural to use in many
situations in Z specifications, and Z users seem to use
them rather commonly. In 28 case studies presented in
six prominent Z books [15, ch. 1] [4, parts B–D] [6,
ch. 16–25] [13, ch. 8] [17, ch. 15 and 20–23] [18, ap-
pendix A], over 67% of the 353 schemas which imply
state changes or output are already in one of the above
forms, once the schemas that are defined by including
or combining other schemas are expanded out into their
full forms. Another 6% contain instances of (for exam-
ple) the new value of one variable being defined in terms
of the new value of another, in contexts like

a0 = f (a) ^
b0 = g(a0)

in which the departure from the above forms can eas-
ily be eliminated by an obvious substitution. Again, the
translation to conditional-concurrent-assignment form is
straightforward.

We could proceed, then, by translating all of the
specifications of operations directly from Z predicates
to conditional concurrent assignments, routinely in the
easy cases and using more complex transformations
in the other cases. However, to make the transition
smoother, we devised an intermediate form which com-
bines characteristics of both notations. It is very much
like standard Z — in fact, it can be considered a non-
standard dialect of Z — except that all state changes are
specified explicitly and constructively.

Here are the principal differences between this nota-
tion and standard Z.

� State changes are written in the form

x := E

This is equivalent to the standard Z

x0 = E

but the change in notation emphasizes the explicit,
constructive definition of the state change. The
same assignment notation is used to specify the
computation of outputs.

� Every change to a state component is specified in
this way; it is implied that no other state compo-
nent changes its value. With this convention, all
assertions of the form

x0 = x

are omitted as redundant from schemas that specify
state changes.

There are no implicit changes to one state com-
ponent induced by changes to another state com-
ponent and constraints between them. All state
changes are written out explicitly.

� In the same spirit, where it is asserted that part of a
structured state component is changed, it is implicit
that the rest of the component remains unchanged.
In particular, where the state component is a map-
ping (in Z represented as a function), a change to its
value on one element of its domain can be written
in the form

f a := E

If this is the only change to f that is specified in
the schema in which this appears, it is implied that
f remains unchanged otherwise, and the above is
equivalent to the standard Z

f 0 = f � f a 7! E g

where � is the “override” operator.

More than one change to the same function can be
specified:

f a1 := E1 ^ f a2 := E2

means

f 0 = f � f a1 7! E1; a2 7! E2 g

which, of course, is well-defined (i.e., f 0 is still a
function) only if a1 6= a2 or E1 = E2.

A change to a (curried) function of two arguments
can be written as

f a b := E

which (if no other changes to f are specified in the
schema in which this appears) is equivalent to

f 0 = f � f a 7! ((f a)� f b 7! E g) g

and so on for functions of more arguments.

� Since the syntax x := E is really a predicate, it can
appear anywhere a predicate can appear, such as
within the scope of a quantifier. An example is

8 x : T j x 2 S �
f x := a

which means

f 0 = f � f x : T j x 2 S � x 7! a g

� The symbols � and � are now superfluous in most
places and may be omitted.

� All computations of new states and outputs appear
only in contexts which are unconditional, or in con-
ditional structures (using _ and ^) with mutually
exclusive conditions.

Many of these notation conventions are similar to
constructs in the notation of the B method [19], although
that notation is more restrictive than AZ in a number of
ways.

Since state changes are specified in the form of as-
signments, we tentatively call this variant of the Z nota-
tion “Assignment Z”, or AZ. (We considered the name
“Constructive Z”, but this name is already in use with a
somewhat different meaning [11].) We present AZ not
as another formal specification notation, but merely as
an informally-defined intermediate form between Z and
conditional concurrent assignments.

Where the Z specifications are not already construc-
tive, we transform them into a constructive form as we
rewrite them in AZ notation. For example, we would
rewrite

Pop
stack; stack0 : seq Item
x! : Item

stack = hx!i a stack0

as

Pop
stack : seq Item
x! : Item

x! := head stack
stack := tail stack

Often, as here, making a state change constructive is
rather easy, but it can require considerable manipulation.

There is sometimes more than one way to express
the constructive version, and whatever choice is made
will usually suggest a design or implementation pos-
sibility more strongly than the nonconstructive version
did. Similarly, where the specification is nondetermin-
istic, making it deterministic typically involves either
making arbitrary choices as to the result that is speci-
fied, or making choices influenced by design or imple-
mentation considerations. An example is an allocation
of a resource from a set of numbered resources:

Allocate
free : F N
allocated0 : N

allocated0 2 free
free0 = free n allocated0

(Here F means “finite set of” and N denotes the natu-
ral numbers.) As we convert this to AZ form, we might
make it deterministic by arbitrarily choosing the free re-
source with the minimum number:

Allocate
free : F N
allocated : N

allocated := min free
free := free n fmin freeg

Another way of resolving the nondeterminism would
be to define free to be a sequence rather than a set, and
choosing the first element of the sequence every time:

Allocate
free : seqN
allocated : N

allocated := head free
free := tail free

Clearly, this version encourages a different implementa-
tion. It is important to realize that the transformations
that we perform to make the specification constructive
and deterministic are not just changes in notation, but

are true development steps, and may involve nontrivial
and significant design decisions.

It is probably not necessary to be too dogmatic about
removing all nonconstructive and nondeterministic as-
pects of the specification at this stage. Consider this ex-
ample:

DisplayPeople
knownPeople : F PERSON
people! : F PERSON

people! = knownPeople

This is reasonable Z, but of course if a set is displayed
as an output, it must be displayed in some order. A pos-
sible conversion to AZ might be:

DisplayPeople
knownPeople : F PERSON
people! : seq PERSON

people! = alphabeticalSort knownPeople

where alphabeticalSort denotes sorting by name in
phone-book order. One might object that this is still both
nonconstructive and nondeterministic, since it does not
suggest how the sorting is to be done, and it may al-
low more than one outcome if more than one person can
have the same name. But any other way of writing this
specification is likely to be more complicated and less
satisfactory. Furthermore, it is obvious that any compe-
tent programmer can create an implementation that will
satisfy it. In such situations the pragmatic thing to do
may be to allow specifications such as this one, although
we should do so only after careful consideration.

4 A pilot project

To try out the techniques presented above, we at-
tempted use them on a development project of modest
size. As it happened, we had a project that we were al-
ready planning to undertake.

The project was to develop a “rehearsal scheduler’s
assistant”: a program to help with the planning and
scheduling of the rehearsals and other preparation for
a theatrical production. The central job to be done is to
manage the interacting schedules of many activities and
many people. We had a real client, Doug Dunston, the
faculty member in charge of the music program in our
college. (The project is described in somewhat fiction-
alized form in section 11.3 of [16].)

The first step of the development, after discussing re-
quirements with the client, was to prepare a specification

in standard Z. As is common practice with Z, the speci-
fication took the form of a document, with sections of Z
interspersed with explanatory text in English. The spec-
ification contained 43 schemas, and 16 other Z sections
containing definitions of various kinds.

The specification document contained one other im-
portant specification notation: color pictures of the
screens and other components of the graphical user in-
terface (GUI). Here is an example:

Menu:

change schedule

delete this person

view or change activities

view conflicts

screen = personScreen

4 5 7 8 9 102 3 6 11

Sun

Mon

Tue

Wed

Sat

Thu

Fri

commentary currentPerson:

1pm

Can lead chorus rehearsals when necessary.

"Stewpot".

John Shipman
name currentPerson:

Schedule of

envelope sat

normal

week of March 19
date:

schedule!:

ScheduleSelector:

activities

other obligations

conflict

free

12 1am

We used pictures like these to include in the specifi-
cation a general idea of what the GUI would look like.
However, we adopted the convention that the pictures
would represent only an approximation to the appear-
ance of the interface, which might vary somewhat ac-
cording to the eventual implementation. Colors and di-
mensions (for example) might be slightly different from
the way they appear in the pictures, and there might
be implementation-dependent features not shown in the
pictures, such as additional ways to move from one
screen to another.

On the other hand, some aspects of the pictures are
quite specific. In particular, some of the elements of
each picture are tied to the Z specifications through la-
beling conventions. In the picture, an annotation of
the form someName: (which appears in a distinguished
color, magenta, when the specification is printed or dis-
played in color) is not to appear in the actual GUI as
displayed, but indicates that the corresponding part of
the GUI corresponds to the construct of the same name

in the Z specification. If there might be any doubt as to
what part of the display is being referred to, a box of the
same color is drawn around the relevant part; again, this
will not actually appear in the GUI.

Here is the Z schema that corresponds to the above
picture:

PersonScreen
PersonData
ScheduleSelector
PersonScheduleDisplay
Menu[SCREEN]

screen = personScreen

preselected! := normal
date = today

menuChoices! :=
f editPersonScreen 7!

“view or change activities”;
personScheduleScreen 7!

“change schedule”;
showConflictsScreen 7!

“view conflicts”;
deletePersonScreen 7!

“delete this person”g
screen := chosenItem?

The annotation screen = personScreen in the picture
indicates that screen has the value personScreen when
what the user sees is the screen shown in the picture.
The variables date and preselected! are defined in the
schema ScheduleSelector; preselected! defines which of
the two selector buttons is initially shown as selected.
Whenever a schema defines a GUI component, we de-
fine informally in the accompanying text how the Z com-
ponents relate to what the user sees and can manipulate.

We adopted several other conventions to reduce the
amount of repetitive detail in the specification. For ex-
ample, in many places in the GUI there is a box in which
the user can fill in or edit a value. Wherever a picture
contains such a box labeled with the name (for example)
x, and x is a variable of type T, we treat that annotation
as implicitly introducing a Z schema of the form

Edit x
displayed x! : TEXT
entered x? : TEXT
x : T

displayed x! := TtoTEXT x

x := TEXTtoT entered x?

where TtoTEXT and TEXTtoT are appropriate conver-
sion functions. The box labeled date: is an example

of this; the schema personScreen also specifies that the
value initially displayed for date is today’s date.

The specification document, then, contains English
text, Z notation, and pictures, all interrelated. It should
be apparent that some parts of the specification are for-
mal and other parts are quite informal. In all, the docu-
ment is 42 pages long.

The next step, after meeting again with the client to
discuss that specification and obtain his approval, was
to prepare another version of the document in which the
parts of the Z sections were rewritten in AZ form. This
turned out to be quite easy in most places, especially
since most of the state changes were specified in such a
way that the translation was trivial, as discussed in the
previous section. In many cases, the resulting specifica-
tions turned out to be considerably simpler than the orig-
inal, largely because of the AZ convention for express-
ing changes to components of structured objects. For ex-
ample, the specification used curried functions like the
following in many key places:

SCHEDULESTATUS ::=

free j booked j otherObligations j conflict
DAYSCHEDULE ==

TIME 7! SCHEDULESTATUS
WEEKSCHEDULE ==

DAYOFWEEK ! DAYSCHEDULE

NormalSchedules
: : :
People
normalSchedule :

PERSON 7! WEEKSCHEDULE

: : :

This was a natural way of constructing
normalSchedule, especially since we sometimes
wanted to refer to the whole weekly schedule of a
person, sometimes for that schedule on a particular day,
and sometimes to that schedule at a particular time. But
then specifications of state changes like the following
became complex and tedious:

normalSchedule0 = normalSchedule �
f currentPerson 7!
(normalSchedule currentPerson)�

f day 7!
(normalSchedule currentPerson day)�

f t 2 possibleTimes day j
from � t < to �

t 7! selected? g g g

The AZ form of this is much more straightforward:

8 t 2 possibleTimes day j from � t < to �
normalSchedule currentPerson day t

:= selected?

In determining what needed to be rewritten to make
it constructive, we were guided by pragmatic considera-
tions. For example, the original specification contained
a number of state changes specified using set compre-
hensions, in forms such as

result := fa 2 S j P(a)g

But in each such case, S was a finite set and so, in
principle at least, the set of its elements satisfying P
could be constructed by a simple-minded enumeration
of the set, testing each element. Indeed, for this reason a
mathematician would probably consider such an expres-
sion quite constructive, and we judged all such specifi-
cations to be “constructive enough” for our purposes. In
fact, in the implementation, each such set turned out to
be reasonably small, and so this is exactly how almost
every such state change was actually implemented.

For a number of reasons, including portability (the
program was to be developed on our Linux machines
but would eventually run on Dr. Dunston’s Macintosh),
we chose the Python programming language and the Tk-
inter GUI library for the implementation.

We found it easy to implement many parts of the
AZ specification using Python constructs, in ways that
so obviously matched the specification that verifica-
tion was hardly necessary. This was especially true of
state changes that called for modifying values of func-
tions. We implemented the function normalSchedule,
for example, as a dictionary indexed by Person and
Activity objects, containing lists indexed by numbers
representing days of the week, where those lists con-
tained dictionaries indexed by Time objects and contain-
ing ScheduleStatus objects. Thus, for example, the im-
plementation of the state change specified by

8 t 2 possibleTimes day j from � t < to �
normalSchedule currentPerson day t

:= selected?

turned out to be simply

for t in possibleTimes(day):
if fromTime <= t < toTime:

normalSchedule[currentPerson] n
[day][t] n

= selected

which is essentially identical to the specification.
We used one other significant piece of software en-

gineering technology in the project: a form of “literate

programming” [7]. This means that the program is pre-
pared and presented in the form of a document, with
explanatory text accompanying each section of program
code. Thus the program and its documentation are in-
tegrated, and stored in a single file. There are software
tools that process that file either to strip out and order
the code sections for compilation and execution, or to
format the document for viewing or printing.

In the usual kind of literate programming, the code
fragments may appear in the document in any order, but
the author must use markup commands to define their
ordering and nested structure in the final program. We
adopted a much more “lightweight” approach, in which
the code fragments appear in the program in the same or-
der in which they are presented in the document. This is
reasonable with Python, in which the order of elements
in a program is relatively unconstrained. And it means
that the program that strips out the code fragments for
execution does not need to do any reordering, which
made it a very simple program. Even more important,
it means that the programmer does not need to include
markup to structure the program fragments. In fact, the
only extra markup necessary is a pair of commands de-
fined in the markup language (LATEX in our case) to mark
the beginning and end of a code fragment.

With very little extra effort, then, we were able to
maintain the code and a description of it as a readable
document. In many places we also included sections of
Z and pictures of the GUI, cut-and-pasted from the spec-
ification documents. The result is a document very simi-
lar to those documents in style and appearance, but with
code sections added. Each code section is accompanied
by commentary and, in many cases, the Z and pictorial
specifications from which the code was derived.

In many places we also extracted fragments of Z from
the specification and incorporated them into intended
functions in the code fragments. Here is an example:

V

def emptyDaySchedule(d):
[returned value := a dictionary

f t 2 possibleTimes(d) � t 7! free) g]
result = f g
for t in possibleTimes(d):

result[t] = free
return result

By the way, the annotation “V” in the corner of the
box indicates that this section of code has been verified.
An annotation “VT” would indicate that it had also been
tested. We used such annotations to keep track of the

status of each fragment directly in the program docu-
ment during the development, and we found this very
helpful.

We did not follow Z protocols for formal refinement
at all. The implementation was constructed using ordi-
nary programming skills, as well as Cleanroom-based
methods in which intended functions are implemented
in a stepwise manner in terms of code and lower-level
intended functions [16, ch. 5]. We constantly used the
structure of the Z specification as a guide, and this made
many parts of the implementation almost trivial to con-
struct.

We verified both the translation of the Z to AZ,
and the program code developed from the AZ. Unfor-
tunately, we were unable to adhere strictly to Clean-
room methods in doing this. Cleanroom is inherently
a group process; in particular, verification is done in
review meetings, with the author and colleagues dis-
cussing each correctness criterion and examining the
program for other aspects of quality. The goal is to dis-
cover and eliminate as many defects as possible while
attempting the verification. Normally this requires a
group of at least three people, since each person often
notices defects that the others miss.

But only one other person trained in Cleanroom
methods was available at the time, and the amount of
time that he had available was quite limited. There-
fore, parts of the program were verified in a two-person
group, and some parts were done strictly as a solo effort.
We found that verification under these circumstances
was far less reliable than normally expected with Clean-
room methods, which typically achieve a level of defects
of three per thousand lines of code or better before first
execution [8] [3].

To add to our difficulties, we were somewhat unfa-
miliar with the Python language and the Tkinter library,
and made a number of minor mistakes in usage, espe-
cially early in the project. Since Python is an interpreted
language, the mistakes that escaped our notice during
verification were not caught in compilation, but in first
execution.

To attempt to compensate, we eventually developed
an alternate protocol. The project plan called for the pro-
gram to be developed in rather substantial increments, as
is normal with the Cleanroom method. We divided each
of these into a number of very small increments, each
adding perhaps only one simple new feature to the pro-
gram; these increments ranged in size from about thirty
to two hundred new and changed lines.

After each of these increments was coded, we in-
spected it several times, using a checklist and checking
different aspects each time. We checked such things as
points of syntax and usage which had caused us prob-

lems before, matching of each function and method call
against its definition (comparing both intended functions
and number and types of parameters), and correspon-
dence of intended functions with the Z in the specifi-
cation document. Finally we inspected for correctness
of each section of code with its intended functions. In
some cases, as in the normalSchedule example above,
we judged the code obviously correct “by inspection”;
in other cases we carried through more detailed correct-
ness arguments, mentally or on paper [16]. We caught
and eliminated many defects by means of these inspec-
tions, about four defects per hundred lines on average.

Each increment was then integrated into the program;
thus we were, in effect, “growing” the program gradu-
ally, as advocated by Brooks [1, p. 18]. At each integra-
tion step we ran a few cursory tests to execute each new
piece of code for the first time, and many more defects
showed up immediately. The defect density on first exe-
cution was about five per hundred lines on average, not
nearly as good as normally expected with Cleanroom
methods. Thus, our one-person inspection protocol does
not come close to competing with a full Cleanroom-style
verification review by this measure.

Fortunately, this had little effect on the effectiveness
of the development! Almost all of the defects that sur-
vived the inspections were caught on first execution and
were simple oversights: typographical errors, mistakes
in punctuation, mistakes in names of variables, omitted
initialization, and the like. Each took only a few minutes
to track down and fix. There were no deep algorithm
flaws, no subtle bugs which would cause malfunctions
only rarely, and no places in which we had implemented
algorithms that would do something quite different from
what was specified. This is typical of what normally
happens in a Cleanroom-style development: the really
nasty bugs are the ones that specification and verification
seem to be most effective at preventing or eliminating.

Most important for the subject of this paper, the entire
development went very smoothly. At no time did we feel
that the mixture of notation was a hindrance or added ex-
cessive complexity to the process. On the contrary, we
felt that it was definitely helpful to have a Z specification
to use a a basis for the development, and that specifying
the program using the vocabulary of discrete mathemat-
ics right from the beginning probably made the design
cleaner than it would otherwise have been. We also felt
that using Cleanroom-style intended functions and step-
wise refinement definitely contributed to the quality of
the product, as did inspections, imperfect as the latter
were. These are subjective judgments for the most part,
of course, but we think they are justified.

At the time of writing, the third of the five major in-
crements called for in the project plan has been com-

pleted, resulting in 1409 nonblank, non-comment lines
of code in the Python language. (We estimate that sev-
eral times as many lines would have been needed in a
lower-level language such as C or Java.) We found only
five defects in further testing; this means that the defect
density that we obtained after inspection and first test
during integration is comparable to the defect density
normally obtained after verification in Cleanroom.

Dr. Dunston has begun to use the program experi-
mentally, and intends to put it into full production use
for his next musical comedy. By that time the remain-
ing increments will be constructed and installed. Mean-
while, we have begun to use the program in our own
work, to help schedule the activities of the staff of an in-
troductory computer science course (lecturers, teaching
assistants, tutors and graders) around all of their other
obligations. The program has been quite helpful with
this. As of the time of writing, no further defects have
been found in the program.

5 Conclusions

We consider that the integration of Z and Cleanroom,
as described above, was successful. We believe that the
use of specification via pictures and of “lightweight”
literate programming contributed to the success of the
project as well. Results obtained from one project of
this size are not conclusive, of course, but all indications
are positive thus far.

We definitely intend to use similar combinations of
technologies in future projects, and are eager to try them
on substantially larger projects. Since Z and Cleanroom
have been used separately on projects of substantial size
with considerable success, we see no reason why the
same should not be true when they are used together,
but only actual experience will tell us with certainty.

Beyond this, we believe that our results confirm and
support several ideas already noted by other writers and
researchers regarding the way to use formal methods
most effectively. First, formal methods are not mono-
lithic: it is quite possible to use some parts or aspects
of a method without using all of the method. For exam-
ple, it makes perfect sense to write specifications in Z
even if one has no intention of using the accompanying
methods for formal refinement, and doing this seems to
be rather common among Z users.

Similarly, it is perfectly reasonable to use more than
one formal method or notation in a project, according to
which is most suitable for each part of the project. A
notable example of this was the development project for
the CDIS air traffic control display system [2], which
successfully used a variety of formal notations: VDM,
VVSL, CSP and CCS, as well as data-flow diagrams and

finite-state machines.
Finally, full formality is not only not necessary to ob-

tain the benefits of formal methods, but is frequently not
even productive or cost-effective. In the postmortem to
the Hursley experiment [12, p. 293], Mark Pleszkoch
of the IBM Cleanroom Software Technology Center is
quoted as saying:

I believe that the key to applying Cleanroom
in a cost-effective, highly productive manner
is to not force developers to go to a level of
formality beyond their needs (and abilities),
while at the same time not losing the bene-
fits of precise documentation that makes clear
what each piece of code is designed to do.

A number of other writers have been expressing sim-
ilar opinions in recent years (see, e.g., [14] and [2,
pp. 74–75]). The general principle is that there is an ap-
propriate level of formality for every situation, and more
rigor is not always better. If this is not yet the consensus
of the formal methods community, perhaps it eventually
will be.

Acknowledgement: We are indebted to Steve Powell
of IBM at Hursley for many thoughtful comments and
suggestions.

References

[1] Frederick P. Brooks, Jr. “No silver bullet: Essence
and accidents of software engineering.” Computer
20, 4, pp. 10–19, April 1987.

[2] Anthony Hall. “Using formal methods to develop
an ATC information system.” IEEE Software 13, 2
(March 1996), pp. 66–76.

[3] P. A. Hausler, R. C. Linger and C. J. Trammell.
“Adopting Cleanroom software engineering with
a phased approach.” IBM Systems Journal 33, 1
(1994), pp. 89–109.

[4] Ian Hayes, ed. Specification Case Studies. London:
Prentice Hall International (UK) Ltd, 1987.

[5] Iain Houston and Steve King. “CICS project re-
port: Experiences and results from the use of Z
in IBM.” In VDM ’91: Formal Software Devel-
opment Methods, pp. 588–596. Berlin: Springer-
Verlag, 1991.

[6] Jonathan Jacky. The Way of Z. Cambridge, Eng-
land: Cambridge University Press, 1997.

[7] Donald E. Knuth. “Literate programming.” The
Computer Journal 27, 2 (May 1984), pp. 97–111.

[8] Richard C. Linger. “Cleanroom process model.”
IEEE Software 11, 2 (March 1994), pp. 50–58.

[9] Harlan D. Mills. “The new math of computer pro-
gramming.” Commun. ACM 18, 1 (January 1975),
pp. 43–48.

[10] Harlan D. Mills, Michael Dyer and Richard C.
Linger. “Cleanroom software engineering.” IEEE
Software 4, 5 (September 1987), pp. 19–24.

[11] Seyed-Hassan Mirian-Hosseinabadi and Raymond
Turner. “Constructive Z.” J. Logic Computat. 7,
96-48 (1997), pp. 49–70.

[12] Glyn Normington. “Cleanroom and Z.” In Z
User Workshop, London 1992. London: Springer-
Verlag, 1992.

[13] Ben Potter, Jane Sinclair and David Till. An Intro-
duction to Formal Specification and Z (second edi-
tion). Hemel Hempstead, England: Prentice Hall
Europe, 1996.

[14] Hossein Saiedian, ed. “An invitation to formal
methods.” Computer 29, 4 (April 1996), pp. 16–30.
See particularly the contributions of Jones, Jack-
son and Wing, and Lutz.

[15] J. M. Spivey. The Z Notation: A Reference Man-
ual (second edition). Hemel Hempstead, England:
Prentice Hall International (UK) Limited, 1992.

[16] Allan M. Stavely. Toward Zero-Defect Program-
ming. Reading, Mass.: Addison Wesley Longman,
1999.

[17] Jim Woodcock and Jim Davies. Using Z: Specifi-
cation, Refinement and Proof. Hemel Hempstead,
England: Prentice Hall Europe, 1996.

[18] J. B. Wordworth. Software Development with Z:
A Practical Approach to Formal Methods in Soft-
ware Engineering. Wokingham, England: Addison
Wesley, 1992.

[19] J. B. Wordworth. Software Development with B:
An Introduction. Harlow, England: Addison Wes-
ley Longman Limited, 1996.

